Predicting students’ performance in e-learning using learning process and behaviour data

1. Giannakos, N. & Vlamos, P. Empirical examination and the role of experience. Educational webcasts’…

  • 1.

    Giannakos, N. & Vlamos, P. Empirical examination and the role of experience. Educational webcasts’ acceptance. Br. J. Educ. Technol. 44, 125–143. https://doi.org/10.1111/j.1467-8535.2011.01279.x (2013).

    Article 

    Google Scholar
     

  • 2.

    Qu, S., Li, K., Wu, B., Zhang, X. & Zhu, K. Predicting student performance and deficiency in mastering knowledge points in moocs using multi-task learning. Entropy 21, 1216. https://doi.org/10.3390/e21121216 (2019).

    ADS 
    Article 
    PubMed Central 

    Google Scholar
     

  • 3.

    Gasevic, D., Siemens, G. & Rose, C. P. Guest editorial: Special section on learning analytics. IEEE Trans. Learn. Technol. 10, 3–5. https://doi.org/10.1109/tlt.2017.2670999 (2017).

    Article 

    Google Scholar
     

  • 4.

    Shu, Y., Jiang, Q. & Zhao, W. Accurate alerting and prevention of online learning crisis: An empirical study of a model. Dist. Educ. Chinahttps://doi.org/10.13541/j.cnki.chinade.2019.08.004 (2019).

    Article 

    Google Scholar
     

  • 5.

    Sun, Y. Characteristics analysis of online learning behavior of distance learners in open university. China Educ. Technol. 2, 64–71 (2015).


    Google Scholar
     

  • 6.

    Cohen, A. Analysis of student activity in web-supported courses as a tool for predicting dropout. Etr&D-Educ. Technol. Res. Dev. 65, 1285–1304. https://doi.org/10.1007/s11423-017-9524-3 (2017).

    Article 

    Google Scholar
     

  • 7.

    Lin, J. Moocs learner characteristics and study effect analysis research. China Audio-vis. Educ. 2, 2 (2013).


    Google Scholar
     

  • 8.

    Balakrishnan Eecs, G.,. Predicting student retention in massive open online courses using hidden markov models. Digit. Collect. 2, 2 (2013).


    Google Scholar
     

  • 9.

    Joksimovi, S. et al. How do we model learning at scale a systematic review of research on moocs. Rev. Educ. Res. 88(1), 43–86. https://doi.org/10.3102/0034654317740335 (2017).

    Article 

    Google Scholar
     

  • 10.

    Coussement, K., Phan, M., Caigny, A. D., Benoit, F. & D. & Raes, A.,. Predicting student dropout in subscription-based online learning environments: The beneficial impact of the logit leaf model. Decis. Support Syst. 135, 113325. https://doi.org/10.1016/j.dss.2020.113325 (2020).

    Article 

    Google Scholar
     

  • 11.

    Kotsiantis, S., Pierrakeas, C. & Pintelas, P. Preventing student dropout in distance learning using machine learning techniques. Springer Berlin Heidelberg 18, 411–426. https://doi.org/10.1080/08839510490442058 (2003).

    Article 

    Google Scholar
     

  • 12.

    Lei, Z. & Tong, D. The prediction of academic achievement and analysis of group characteristics for mooc learners based on data mining. Chongqing Higher Educ. Res. 2, 1–13 (2021).


    Google Scholar
     

  • 13.

    Yang Zong, H. Z. & Hongtao, S. A logistic regression analysis of learning behaviors and learning outcomes in moocs. Dist. Educ. Chinahttps://doi.org/10.13541/j.cnki.chinade.20160527.002 (2016).

    Article 

    Google Scholar
     

  • 14.

    Fan, Y. & Wang, Q. Prediction of academic performance and risk: A review of literature on predicative indicators in learning analytics. Dist. Educ. Chinahttps://doi.org/10.13541/j.cnki.chinade.2018.01.001 (2018).

    Article 

    Google Scholar
     

  • 15.

    Romero, C., Cerezo, R., Bogarín, A. & Sànchez-Santillán, M. Educational process mining: A tutorial and case study using moodle data sets. Data Min. Learn. Anal. Appl. Educ. Res. 2, 1–28 (2016).


    Google Scholar
     

  • 16.

    Nawang, H., Makhtar, M. & Shamsudin, S. Classification model and analysis on students’ performance. J. Fundam. Appl. Sci. 9, 869–885. https://doi.org/10.4314/jfas.v9i6s.65 (2017).

    Article 

    Google Scholar
     

  • 17.

    Keogh, E. J. & Mueen, A. Curse of dimensionality. Encycl. Mach. Learn. Data Mining 314–315, 2017. https://doi.org/10.1007/978-1-4899-7687-1_192 (2017).

    Article 

    Google Scholar
     

  • 18.

    Hooshyar, D., Pedaste, M. & Yang, Y. Mining educational data to predict students’ performance through procrastination behavior. Entropy 22, 12. https://doi.org/10.3390/e22010012 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Du, X., Yang, J., Shelton, B. E., Hung, J. & Zhang, M. A systematic meta-review and analysis of learning analytics research. Behav. Inf. Technol. 40, 49–62. https://doi.org/10.1080/0144929X.2019.1669712 (2021).

    Article 

    Google Scholar
     

  • 20.

    E.Shelton, B., Yang, J., Hung, J.-L. & Du, X. Two-stage predictive modeling for identifying at-risk students. In Innovative Technologies and Learning, Icitl 2018, vol. 11003 of Lecture Notes in Computer Science, 578–583, https://doi.org/10.1007/978-3-319-99737-7_61 (Springer, 2018).

  • 21.

    Lagus, J., Longi, K., Klami, A. & Hellas, A. Transfer-learning methods in programming course outcome prediction. Acm Trans. Comput. Educ.https://doi.org/10.1145/3152714 (2018).

    Article 

    Google Scholar
     

  • 22.

    Marquez-Vera, C. et al. Early dropout prediction using data mining: A case study with high school students. Expert. Syst. 33, 107–124. https://doi.org/10.1111/exsy.12135 (2016).

    Article 

    Google Scholar
     

  • 23.

    Marbouti, F., Diefes-Dux, H. & Madhavan, K. Models for early prediction of at-risk students in a course using standards-based grading. Comput. Educ. 103, 1–15. https://doi.org/10.1016/j.compedu.2016.09.005 (2016).

    Article 

    Google Scholar
     

  • 24.

    Zhao, L. et al. Academic performance prediction based on multisource, multifeature behavioral data. IEEE Access 9, 5453–5465. https://doi.org/10.1109/access.2020.3002791 (2021).

    Article 

    Google Scholar
     

  • 25.

    Kumar, K. & Vivekanandan, V. Advancing learning through smart learning analytics: A review of case studies. Asian Assoc. Open Universities J. (2018).

  • 26.

    Yao, Z. A review of the student engagement theory. J. Shunde Polytechnic 16, 44–52 (2018).


    Google Scholar
     

  • 27.

    Ma, Z., Su, S. & Zhang, T. Research on the e-learning behavior model based on the theory of learning engagement–taking the course of ”the design and implementation of network teaching platform” as an example. Modern Educational Technology27, 74–80 (2017).

  • 28.

    F.Agudo-Peregrina, A., Iglesias–Pradas, S., Conde-González, M. A. & Hernández-Garcáa, A. Can we predict success from log data in vles? classification of interactions for learning analytics and their relation with performance in vle-supported f2f and online learning. Computers in human behavior31, 542–550, https://doi.org/10.1016/j.chb.2013.05.031 (2014).

  • 29.

    Gomez-Aguilar, D. A., Hernandez-Garcia, A., Garcia-Penalvo, J. & Heron, R. Tap into visual analysis of customization of grouping of activities in elearning. Comput. Hum. Behav. 47, 60–67. https://doi.org/10.1016/j.chb.2014.11.001 (2015).

    Article 

    Google Scholar
     

  • 30.

    Kumar, V. S., Pinnell, C. & Paulmani, G. Analytics in Authentic Learning 75–89 (Springer, Berlin, 2018).


    Google Scholar
     

  • 31.

    Guo, F. & Liu, Q. A study on the correlation between online learning behavior and learning effect–based on the teaching practice of the flipped classroom of blackboard. Higher Educ. Sci. https://doi.org/10.1007/978-981-10-5930-8_6 (2018).

    Article 

    Google Scholar
     

  • 32.

    Liang, D., Jia, J., Wu, X., Miao, J. & Wang, A. Analysis of learners’ behaviors and learning outcomes in a massive open online course. Knowl. Manag. E-Learn. Int. J. 6, 281–298 (2014).


    Google Scholar
     

  • 33.

    Comer, K. & Clark, C. Peer-to-peer writing in introductory-level moocs. Writing to learn and learning to write across the disciplines. Int. Rev. Res. Open Dist. Learn. 15, 26–82 (2014).


    Google Scholar
     

  • 34.

    Kokoç, M. & Altun, A. Effects of learner interaction with learning dashboards on academic performance in an e-learning environment. Behav. Inf. Technol. 40, 161–175. https://doi.org/10.1080/0144929X.2019.1680731 (2021).

    Article 

    Google Scholar
     

  • 35.

    Binbin, Z., Lin, C. H. & Kwon, J. B. The impact of learner-, instructor-, and course-level factors on online learning. Comput. Educ.https://doi.org/10.1016/j.compedu.2020.103851 (2020).

    Article 

    Google Scholar
     

  • 36.

    Qureshi, M. A., Khaskheli, A., Qureshi, J. A., Raza, S. A. & Yousufi, S. Q. Factors affecting students’ learning performance through collaborative learning and engagement. Interact. Learn. Environ.https://doi.org/10.1080/10494820.2021.1884886 (2021).

    Article 

    Google Scholar
     

  • 37.

    Shen, X., Liu, M., Wu, J. & Dong, X. Towards a model for evaluating students’ online learning behaviors and learning performance. Dist. Educ. China.https://doi.org/10.13541/j.cnki.chinade.2020.10.001 (2020).

    Article 

    Google Scholar
     

  • 38.

    Akram, A. et al. Predicting students’ academic procrastination in blended learning course using homework submission data. IEEE Access 7, 102487–102498. https://doi.org/10.1109/access.2019.2930867 (2019).

    Article 

    Google Scholar
     

  • 39.

    Chaity, et al. Feature representations using the reflected rectified linear unit(rrelu) activation. Big Data Mining Anal. 3, 20–38 (2020).


    Google Scholar
     

  • 40.

    Madichetty, Sreenivasulu & Sridevi, M. Comparative study of statistical features to detect the target event during disaster. Big Data Mining Anal. 3, 39–48. https://doi.org/10.26599/BDMA.2019.9020021 (2020).

    Article 

    Google Scholar
     

  • 41.

    Saha, S., Ghosh, M., Ghosh, S., Sen, S. & Sarkar, R. Feature selection for facial emotion recognition using cosine similarity-based harmony search algorithm. Appl. Sci. 10, 2816. https://doi.org/10.3390/app10082816 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Zigeng, W., Xiao, S. & Rajasekaran R. Novel and efficient randomized algorithms for feature selection. Big Data Mining Anal. 3, 56–72. https://doi.org/10.26599/BDMA.2020.9020005 (2020).

    Article 

    Google Scholar
     

  • 43.

    Chen, L. & Xia, M. A context-aware recommendation approach based on feature selection. Appl. Intell.https://doi.org/10.1007/s10489-020-01835-9 (2020).

    Article 

    Google Scholar
     

  • 44.

    Huang, H., Lin, J., Wu, L., Fang, B. & Sun, F. Machine learning-based multi-modal information perception for soft robotic hands. Tsinghua Science and Technology25, 255–269, (2019).

  • 45.

    Qinchen, Cao & W., Zhang, Y. & Zhu J.,. Deep learning-based classification of the polar emotions of moe-style cartoon pictures. Tsinghua Sci. Technol. 26, 275–286 (2021).

    Article 

    Google Scholar
     

  • 46.

    Muhammad, M., Liu, Y., Sun, M. & Luan, H. Enriching the transfer learning with pre-trained lexicon embedding for low-resource neural machine translation. Tsinghua Sci. Technol. 26, 2 (2020).


    Google Scholar
     

  • 47.

    Vieira, C., Parsons, P. & Byrd, V. Visual learning analytics of educational data: A systematic literature review and research agenda. Comput. Educ. 122, 119–135. https://doi.org/10.1016/j.compedu.2018.03.018 (2018).

    Article 

    Google Scholar
     

  • 48.

    Jiang, S., E.Williams, A., Schenke, K., Warschauer, M. & K.O’Dowd, D. Predicting mooc performance with week 1 behavior. In Proceedings of the 7th International Conference on Educational Data Mining, EDM 2014, London, UK, July 4-7, 2014, 273–275 (International Educational Data Mining Society (IEDMS), 2014).

  • 49.

    Aziz, A. A., Ahmad, F. I. & Hassan, H. A framework for studentsa academic performance analysis using naa ve bayes classifier. Jurnal Teknologi 75, 2 (2015).

    Article 

    Google Scholar
     

  • 50.

    Ahuja, R. & Kankane, Y. Predicting the probability of student’s degree completion by using different data mining techniques. 2017 Fourth International Conference on Image Information Processing 474–477, https://doi.org/10.1109/ICIIP.2017.8313763 (2017).

  • 51.

    Asif, R., Merceron, A., Ali, S. A. & Haider, N. G. Analyzing undergraduate students’ performance using educational data mining. Comput. Educ. 113, 177–194. https://doi.org/10.1016/j.compedu.2017.05.007 (2017).

    Article 

    Google Scholar
     

  • 52.

    Shen, H., Ju, S. & Sun, J. Performance prediction based on fuzzy clustering and support vector regression. J. East China Normal Univ. 2, 66–73 (2019).


    Google Scholar
     

  • 53.

    Moore, M. G. Three types of interaction. Am. J. Dist. Educ. 3, 1–6. https://doi.org/10.1080/08923648909526659 (1989).

    Article 

    Google Scholar
     

  • 54.

    Hillman, D. C., Willis, D. J. & Gunawardena, C. N. Learner-interface interaction in distance education: An extension of contemporary models and strategies for practitioners. Am. J. Dist. Educ. 8, 30–42. https://doi.org/10.1080/08923649409526853 (1994).

    Article 

    Google Scholar
     

  • 55.

    Hirumi, A. A framework for analyzing, designing, and sequencing planned elearning interactions. Quart. Rev. Dist. Educ. 3, 141–60 (2002).


    Google Scholar
     

  • 56.

    Peng, W., Yang, Z. & Huang, K. Analysis of online learning behavior and research on its model. China Educ. Technol. 2, 31–35 (2006).


    Google Scholar
     

  • 57.

    Malikowski, S. R., Thompson, M. E. & Theis, J. G. A model for research into course management systems: Bridging technology and learning theory. J. Educ. Comput. Res. 36, 149–73. https://doi.org/10.2190/1002-1t50-27g2-h3v7 (2007).

    Article 

    Google Scholar
     

  • 58.

    Veletsianos, G., Collier, A. & Schneider, E. Digging deeper into learners’ experiences in moocs: Participation in social networks outside of moocs, notetaking and contexts surrounding content consumption. Br. J. Educ. Technol. 46, 570–587. https://doi.org/10.1111/bjet.12297 (2015).

    Article 

    Google Scholar
     

  • 59.

    Wu, L., Lao, C., Liu, Q. & Cheng, Y. Online learning behavior analysis model and its application in network learning space. Mod. Educ. Technol. 28, 46–53. https://doi.org/10.3969/j.issn.1009-8097.2018.06.007 (2018).

    Article 

    Google Scholar
     

  • 60.

    Wu, F. & Tian, H. Mining meaningful features of learning behavior: Research on prediction framework of learning outcomes. Open Educ. Res. 25, 75–82. https://doi.org/10.13966/j.cnki.kfjyyj.2019.06.008 (2019).

    Article 

    Google Scholar
     

  • 61.

    Gayman, C. M., Hammonds, F. & Rost, K. A. Interteaching in an asynchronous online class. Scholarsh. Teach. Learn. Psychol. 4, 231. https://doi.org/10.1037/stl0000126 (2018).

    Article 

    Google Scholar
     

  • 62.

    Kuzilek, J., Hlosta, M. & Zdrahal, Z. Open university learning analytics dataset. Sci. Data 4, 2. https://doi.org/10.1038/sdata.2017.171 (2017).

    Article 

    Google Scholar
     

  • 63.

    Wong, T. & Yeh, P. Reliable accuracy estimates from k-fold cross validation. IEEE Trans. Knowl. Data Eng. 32, 1586–1594. https://doi.org/10.1109/TKDE.2019.2912815 (2019).

    Article 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *